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Abstract 
Rubiales is a major heavy oil field in Colombia with an OOIP larger than 5000 MSTB (Stanko, and others, 2015). The field produces 

from six zones mainly with horizontal wells. Production is driven by a strong aquifer which causes tilted oil-water-contact and early 

water breakthrough. Fully integrated reservoir modelling for field development optimization under subsurface uncertainty has been a 

major challenge so far. This paper presents an automated calibration process, probabilistic infill well ranking and location optimization. 

An automated reservoir characterization workflow was developed to generate multiple history matched models on field and well 

level. Static reservoir characteristics and contacts where parameterized for sensitivity assessments and calibration update steps. 

Variations of dynamic reservoir characteristics with an impact on model forecasting behavior were applied to alternative history 

matching solutions to create an ensemble of reservoir models for uncertainty assessment. Economic success criteria and a simulation 

opportunity index were defined for a probabilistic well ranking and optimized well location assessment. 

The workflow was applied to a sector of the full field including approximately 300 producer wells. Multiple history match solutions 

were created with 80% of the producer wells matching on well level. Quality assurance measures were applied to verify geological 
consistency of implemented model updates. 

The ensemble of forecasting models was used to deliver a probabilistic well ranking based on a well Net Present Value model. Infill 

well candidates with a robust performance delivery across the ensemble were identified. Results showed that a well placement scenario 

with half of more than 100 well candidates delivered above the economic threshold criterion and a similar recovery compared to 

reference field development plan. Probabilistic sweet spot maps based on a simulation opportunity index were used to efficiently identify 

well locations for more than 30 alternatives well candidates. The method produced robust results above the economic success criterion.  

Methodology and workflow design developed in this work successfully delivered a field development evaluation under subsurface 

uncertainty for a large heavy oil field with complex geological characteristics, long production history and large number of wells. The 

workflow design is applicable for other fields with similar characteristics and delivery objectives. 

The developing of this advanced workflow combined the application of a last-generation High-Resolution Reservoir Simulator 

(HRRS) and an Innovative Collaboration Environment (ICE) (Schlumberger 2020) which combines domain expertise and advanced 
digital technologies (ADT) enhanced quality and time results for history matching (HM) scenarios and bring the opportunity to execute 

several uncertainty cases for forecasting analysis allowing us to consider a wide range of results for final FDP proposed 

 

Introduction 
Rubiales Field is in the Southeast of Puerto Gaitán, to the East of the Departamento del Meta (Stanko, and others, 2015), approximately 

310 km from Bogotá, as illustrated in Figure 1. It is the most important oil field in Colombia in terms of extension, original volumes, 

and production, it is also one of the most complex fields with different types of technical challenges  

Based on technical discussions with the Rubiales Team, a collaborative project was designed to build a 3D model in a specific area 

of the field for dynamic and geological characterization of the reservoir, using new technologies. Optimization workflows in a 

multidomain software (Schlumberger 2020) were used for model calibration, that allows the interaction between geological and dynamic 

model using automated workflows. The general scheme of the solution is presented in Figure 2 
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About to the Regional geological configuration, the basin rises progressively in a West-Southeast direction, being affected by normal 

and inverse faults with variable displacements which are imperceptible in the seismic. The preferential course of these structures are 

NE-SW and N-S; These trends were identified in the structural style of the Rubiales field, as represented in Figure 3. 

 

 
Figure 1. Rubiales Field Location 

 

 
Figure 2. General scheme of the solution 

 

 
Figure 3. Regional geological configuration. 

 

 



 [NOMBRE(S)  AUTOR(ES)] ACIPET 

 

 

Methodology and Data 
 
History matching 

In this project a typical assisted history matching process was running initially, that include sensitivity and uncertainty analysis 

followed by an optimization algorithm. For the sensitivity process a big uncertainty matrix of 84 variables was defined covering static 

and dynamics parameters. The main variables were related with the OWC depth, relative permeabilities, aquifer properties and the seals 

distribution and properties. The definition of this matrix and its limits were agreed based on the statistics of the static model, literature, 

and the knowledge of the field 

Once the sensitivity is completed, the most influence parameters were identified. After this analysis some variables were disabled 

and the uncertainty process was run with a Monte Carlo sampling considering only those parameters that are significant for the objective 

response, which is minimize the mismatch. With this process a case ensemble with a wide spectrum result was obtained, which allowed 

to redefine the limits and the distribution for the uncertainty parameters. The next step was focus on the optimization that is designed to 

improve the objective function value that should be minimized by tuning the set of input parameters remaining as active influencers. An 

evolutionary algorithm was implemented for the optimization that operates with three phases, in the first phase, simulation cases are 
distributed randomly in the search region, which gives an initial ensemble. Then during the second phase, the better simulation cases 

are retained, and the average objective function value is reduced, in the final phase, only the best simulation cases survive.  

Even under a modern algorithm was applied, the matching results were not enough at the well level, however this workflow provided 

a good base case and the insights regarding of reservoir response which are the inputs for the next stage of history matching.  

An innovator methodology was proposed and run, at this point it is well known those parameters that are significant. Vertical wells 

provided enough data to define the OWC depth, however this field has been developed by horizontal wells and these wells don’t usually 

have information about this parameter. In that sense the OWC depth is being modified around the horizontal wells and it is changed 

based on the ratio of the water production in the simulation and the real water production, if the ratio is greater than 1 with 10% of 

acceptable error , it means that the well is producing more water than in reality and the OWC should be deeper, on the contrary if the 

well needs to produce more water the OWC should shallower, these changes are done in a region around of each well or group of wells 

until the mismatch is acceptable, Figure 4 

 
Figure 4. Solution Scheme for OWC change 

 

The second parameter is related with the properties of the rock under producer zones, this intercalated zone could be or not a seal 

rock. As we are dealing with horizontal wells, they navigate through a zone, but the properties of the zone bellow are quite unknown for 

them.  The solution proposed is a workflow that modifies the pore through radius in the rock for this zone based on the required water 

production, each loop will modify the rock properties around the proximal region for each well like the OWC solution approach. The 

influence regions for each well are created using the Voronoi algorithm that divides the space considering that each region contains the 

area that is nearer to one well than any other well. Like the previous case, if the well needs to produce more water the zone located 

below should be more permeable to allow more water to flow form the aquifer, otherwise this zone in the proximal region should be a 
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seal. As the rock type is modified locally a geological control need to be done to ensure the trends and sedimentologic consistency, 

Figure 5 

 
Figure 5. Solution Scheme for Seal properties change 

 

Both parameters are changing simultaneous, the understanding is that the OWC depth impacts the water irruption time, and the 

permeability of the inter-producer zones leads how much water is flowing from below. As it is showed in the image, in the initial 

condition the well is not producing enough water, the zone below is blocking the water flow and the OWC is in a depth, in the final 

condition the zone became more permeable and the OWC is shallower which helps to minimize the mismatch, Figure 6. 

 
Figure 6. Solution Scheme for combine changes 

 
Infill drilling - Uncertainty assessment 

Once we have acceptable matched cases we started the forecasting process, as it is a mature field and the current FDP is focus on 

infill wells, to identify those zones that still have oil to produce is one of the most important tasks to be executed.  

The first step was to evaluate the proposed wells initially, for that, a probabilistic assessment was executed for ranking these wells 
with hundreds of cases to capture the uncertainty model and quantify the impact in the well’s objective (Schulze-Riegert, and others, 

2020b). With this analysis the riskiest wells can be identified to generate a warning about their performance  

The second stage is about to apply a complete automated and integrated workflow called accelerated field development plan shown 

in Figure 7 (Villarroel , Mendoza, Malibran , Quintero  & Nuñez, 2021). This solution allows to run the main steps during an FDP design 

and evaluation, the first step is to have a calibrated model as was described in the previous section. The second step is about to create a 
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Reservoir Quality Index (RQI) (Khalil, Khazraji, & Shuker, 2015) and (Molina & Rincon, 2009), with the current reservoir properties 

considering the main productivity drivers in the field (Souche, Ghorayeb, Natela, Neog, & Dashti, 2016), with this RQI an automated 

target screening under uncertainty is run for each reservoir zone. Once the potential zones or targets are identified, thousands of wells 
possibilities with different trajectories, spacing, orientation, and lateral length can be evaluated in a fully automated way. After the 

workflow has found the potential targets based on the RQI, it creates the wells and run the simulation, at that time a performance 

evaluation needs to be run to determine what scenarios fit the best with the FDP objectives and constraints, finally for the selected 

scenario a probabilistic well ranking is done as a tool for decision making which allows to obtain what is the chance to achieve a certain 

objective for every single proposed well. The last step is about to design a risk mitigation plan aligned with the most impacting and 

unknown reservoir parameters  

 

 
Figure 7. Big Loop solution scheme 

 
 
Results and discussions 
 
In this section we discuss history matching results and production forecast under uncertainty.  

 

History matching (Sensitivity Analysis) 

As we are dealing with dead oil, one the objective in this process is to calibrate the water production. To identify key calibration 

parameters a sensitivity study was launched with results shown in the tornado plot below. Oil water contact depth (OWC) and the 

intercalated seal properties were identified to be the main parameters which impact water production, Figure 8 
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Figure 8. Tornado plot response for water production 

 

As described above, in this step the variables with least impact were discarded and hundreds of uncertainty executions were done to 

cover the entire spectrum of possible solutions. The uncertainty spread of results for rates and accumulated oil, water, liquid and pressure 

are shown in Figure 9.  

 

 
Figure 9. Uncertainty analysis for field rates and reservoir pressure (solid lines) compared to historical data (red dots) 

 

The comparison of the best matched case (green line for water production rate) and the base case (purple line for water production rate) 

in Figure 10 was used to narrow down uncertainty parameter ranges in the model calibration phase using an optimization method 

(evolution strategy). 
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Figure 10. Base Case vs Best Case from Uncertainty Analysis 

 

In the model calibration process, more than 200 simulations were launched using an evolution strategy which is an evolutionary 

optimization method inspired in biological principles. Parameter variation operators mimic evolutionary behavior and ultimately 

converge to an optimal set of solution candidates based on an objective function definition (Schlumberger 2020).  

 

Figure 11 shows a best-case solution candidate identified so far. This case delivers an acceptable history match at full field level and 

will serve as base case for the final calibration phase at well level using an automated workflow design. 

 

 
Figure 11. History matching results at field level. Simulation results (solid line) compared to historical data (dots). 

 

Workflow automation for local history matching 

The automated workflow design for local model updates explained in the first part of this document, delivered an acceptable field wide 

production history match (Figure 12) and in addition, 80% of all wells were matched among all considered cases, also illustrated in the 

mismatch map (Figure 13). This was considered to be a sufficient to move forward to a forecasting analysis,  
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Figure 12. Refined history match at field level after running an automated history matching workflow at well level. Simulation 

results (solid line) compared to historical data (dots). 

 

 
Figure 13. Mismatch map showing 80% of the wells (green) meeting history matching criteria on well level. 

 

For other reservoir performance analyses, matched cases were used to extract data for validating results on well group level as well as 

zone level, shown in Figure 14, and by drilling campaigns, shown in Figure 15. 
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Figure 14. History match by zones 

 

 
Figure 15. History match by Drilling campaigns 

 

Figure 16 shows a direct comparison of historical to simulated results for cumulative well water production. Red triangles represent 

results for cumulative well water production drived from the base case model. Base case results show a broad spread of data away from 

the diagonal line which represents a perfect match. Green squares represent well results from the best case with a distribution close to 

the diagonal line which indicates a much higher match quality.  
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Figure 16. "One to one" graph of historical water production versus simulated model 

 
Finally, Figure 17 documents the improvement of the history matching solution in a series of sequential update steps. The Y axis shows 

the ratio between simulated and historical production and the X axis shows the cases number. The base case shows a large ratio which 

indicates a poor match. At the end of the automated well-based optimization process, the ratio converges to values between 0.9 and 1.1 

which represents a match within a 10 % error margin.  

 
Figure 17. History match evolution 
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Other results in this phase are the final surface of the contact (Figure 18) and an example of the final distribution of rock types for the 

sealing zone below Zone 3 (Figure 19). The OWC surface has different depth areas that were modified to meet history matching 

objectives.  
 

 
Figure 18. Final OWC Surface 

 

 
Figure 19. Final Rock type distribution for the seal bellow Zone 3 

 
Water cut maps are an efficient method to quality control the history match. The comparison of historical to simulated water cut 

distributions was prepared for the 3 most important zones, which are shown in Figure 20. Image details show that the maps are similar, 

reaffirming once again the matching quality  

 
Figure 20. Water cut map for zone1, 2 and 3 for historical (upper row) and simulated data (lower row) 

 
Another important indicator in the model calibration was the volume match, i.e., the production corresponding to all the matched and 

unmatched wells was grouped separately to quantify the volume percentage corresponding to each group. Figure 21 shows that the 

relative volume of water originating from matched wells is 86%, while unmatched wells deliver just a small fraction of 14% to the total 

volume.  
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Figure 21. Percentage of liquid production volume for matched (left) and unmatched (right) group of wells 

 

Finally, to verify the model predictability a blind test was carried out with 12 wells already drilled that were not part of the history match 

workflow. The response from these wells showed a mismatch of less than 20% (Figure 22), which is good enough to assume that the 

model is reliable. 

 

 
Figure 22. Blind Test for the last wells drilled in the sector 
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Production forecast 

The original field development plan included a number of infill wells. An economic well performance indicator was used to evaluate 

the field development plan under uncertainty (Schulze-Riegert, and others, 2020a). Individual wells were investigated under the 
assumption that the well production needs to meet the economic demand of the well, i.e., the production revenue needs to justify capital 

and operational expenditures.  

 

Economic success metric 

A simplified economic model used for the Net Present Value (NPV) calculation as defined below: 

𝑁𝑃𝑉 = ∑
𝑅(𝑡𝑗) ∙ ∆𝑡𝑗

(1 + 𝑑)
𝑡𝑗

𝜏⁄

𝑁𝑡

𝑗=1

  (1) 

with the following contributions described in Table 1 

𝑅(𝑡𝑗) = (𝑄𝑜𝑝(𝑡𝑗) ∙ 𝑟𝑜𝑝 − 𝑄𝑤𝑝(𝑡𝑗) ∙ 𝑟𝑤𝑝) −  𝐷(𝑡𝑗)  (2) 

 

Table 1: NPV parameters definition 

 
Regarding the input data for the NPV calculation is shown below:  

1. For both, the deterministic and probabilistic economic well ranking, a distinction between oil and water production is 

mandatory. 

2. Operating and lifting costs must be related to water production. 

3. Royalties applied at the field or asset level are irrelevant for this type of analysis  

4. Drilling and operational costs define a minimum economic volume for a well to be profitable.  Economic input data included 

in the calculation is listed in Table 2 

 

Table 2: Economic input data 

Parameter Unit 
Oil price (𝑟𝑜𝑝) USD/bbl oil 

Lifting costs USD/ bbl oil 

OPEX water costs (𝑟𝑤𝑝) USD / bbl water 

Royalties  % 

Average Well Drilling costs 𝐷(𝑡𝑗), discounted and effective at 

production start 

USD/producer 

Discount factor % 

 

Drilling costs are connected to the well length (“Measured Depth), The following equations summarize the calculation. 

The average length over all well candidates is defined by 

𝑀𝐷̅̅ ̅̅ ̅ =
1

𝑁
∑ 𝑀𝐷𝑖

𝑁

𝑖=1
 (3) 
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A weight factor is included to account for length 

𝑤𝑖 =
𝑀𝐷𝑖

𝑀𝐷̅̅ ̅̅ ̅  (4) 

Well drilling costs account for length 

𝐷𝑖 = 𝑤𝑖 ∙ 𝐷 (5) 

Probabilistic assessment of infill well performance 

As part of the well-by-well performance analysis, the following calculations are made: P10, P50, P90, standard deviation, minimum, 

maximum and probability of each well for delivering an NPV above a threshold value. 

To evaluate different generic scenarios, several NPV thresholds were established (1 MUSD, 2 MUSD and 4 MUSD). Figure 23 shows 

an example for a well with a 4 MUSD target. In this example, the probability of success to deliver that economic objective is 58 %. 

 

 
Figure 23. NPV cumulative distribution for well INF052-N6 

 

Figure 24 shows a histogram for the well to deliver above the economic threshold of 2 USD million. In this case only 23 wells 90 to 

100% chance to deliver above 2 USD million. 

 

 
Figure 24. Success probability for wells able to deliver an NPV >= 2E6 

 

This probabilistic assessment is extended to all wells, shown in Figure 25. More than 50 % of the total number of proposed wells are 
below the red line, i.e., they are not able to deliver above the economical demand. A well with a 58 % chance of success is highlighted 

(red circle) and the related NPV and cumulative oil profiles for the same well are shown in top right  
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Figure 25. Probabilistic well ranking of all infill well candidates. The diagram shows the probability of a well (y-axis) to deliver least 

the economic demand of that well (x-axis, normalized scale). Profiles based on all matched cases are shown for well INF052-N6 (upper 

right) which has a probabilistic success rate of 58% to deliver the well economic demand (red circle).  

 

The Figure 26 shows the histogram and the cumulative density function for one selected well candidate. Only 58 % of the cases were 

able to deliver an NPV value greater than its economic demand, which indicates a risk that the well will not mee the required economic 
performance.  

 

 
Figure 26. Probability density (histogram) and cumulative density function (red line) for the well candidate INF052-N6. For the 

well candidate 58% of all evaluated cases deliver the economic demand or higher (green shaded area).  
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Sweet spot map – Identify high performing wells. 

Once the NPV analysis was completed in all the proposed wells, the simulation opportunity index, "SOI" was calculated, which is based 

on a paper and was slightly modified adapting it to the reality of the Rubiales reservoir drivers and embodied in an automated workflow 

that serves not only to locate new wells but also to validate the results of NPV vs SOI. For the calculation of the SOI, 4 sub-indexes 

were considered as described below:  

 

ISO: Oil Saturation Index 

ISO =  
(So − Somin)

(Somax − Somin)
, (6) 

IHCVP: Hydrocarbon Pore Volume 

IHCPV =
(HCPV − HCPVmin)

(HCPVmax − HCPVmin)
 (7) 

IKH: Flow Capacity Index 

IKH =
(KH − KH𝑚𝑖𝑛)

(KH𝑚𝑎𝑥 − KH𝑚𝑖𝑛)
 

 

(8) 

IFWL: Free Water Level Index 

IIFWL =
(FWL − FWLmin)

(FWLmax − FWLmin)
 

 

(9) 

These indexes are the dominant production drivers that are part of the next equation SOI: Simulation opportunity index 

 (10) 

All calculations were implemented within a customized workflow for automated execution on a geomodelling platform (Schlumberger 

2020). The automated workflow execution facilitates and speeds up the creation of this property for each of the 6 producing zones and 

it allows to generate the input values per well for creating the plot in Figure 27. 

In order to validate this index as a good measure of the historical behavior and to consider it useful for future recommended new wells, 

a cross plot of SOI vs Cumulative Oil was done to all the wells drilled from 2008 to 2014 (Figure 27). From this cross plot it is clear 

that an SOI value greater than 0.33 gives a percentage of success of 96%.   

 

 
Figure 27. SOI vs NP 
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Additionally, in the Figure 28 the same graph is presented highlighting the abandoned wells. It can be seen, that only 16% of the 

abandoned wells have a SOI greater than 0.33. On the contrary, there is a higher probability that wells with an SOI of less than 0.33 will 

be abandoned. These two graphs are considered useful to establish this value as the appropriate cut-off for searching new wells targets 
in the study sector. 

 

 
Figure 28. SOI vs NP with abandoned wells 

 

Taking the previously detailed analysis as a reference, additional graphs of NPV vs SOI were made for the wells initially proposed, 
which reaffirms that the percentage of success is notably higher for values of SOI>0.33, Figure 29 shows the example for P50 scenario. 

 

 
Figure 29. SOI vs NPV_P50 for the wells proposed initially  

 

With these results, a final development strategy was created to run some additional prediction scenarios leaving out the riskiest wells, 

the forecast was run using P10, P50 and P90 matched cases, the results of these scenarios in terms of water and oil production (rates and 

accumulated) are shown in the Figure 30 
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Figure 30. Field production forecast including the most productive wells proposed using 3 calibrated models 

 

Once the proposed wells were evaluated and ranked, complementary scenarios were run with 32 additional wells proposed based on the 

SOI results. New sweet spots were identified for the FDP distributed in the reservoir zones shown in Figure 31 

 

 
Figure 31. New targets (green circles) identified in Zone 2 

 

A new production forecast including the most economic wells from the initial candidate list combined with 32 new locations, delivers 

an additional cumulative oil production of 24-30 Mbls with 39 fewer wells compared to the initial infill well candidate list, (Figure 32). 

 

 
Figure 32. New forecast adding the new locations 
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The proposed well performance based on SOI targets demonstrated to be an effective way to locate wells with a high probability of 

success. Figure 33 shows well oil production cumulative for all wells. Only 1 out of 32 wells in total was not able to deliver the minimum 

economic demand. 
 

 
Figure 33. Well performance for the targets found with the SOI 

 

Conclusions  
A well-by-well based calibration workflow has been implemented and customized for different areas of the Rubiales field. The 

automated history matching execution time was significantly reduced compared to previous attempts. Within 30 simulation runs an 80% 

history match at well level was achieved. The fully automated sequential workflow design was executed within 120 hours or 5 days of 
total run time.  

Integrated digital technologies provided informed insights to reservoir management of the Rubiales field considering operational well 

actions and field constraints. 

Under the framework of Ecopetrol’s digital innovation framework called ‘accelerated field development plan (aFDP)’, functional 

workflows were created on a cloud computing platform for automated history matching and evaluation of prediction forecasting 

scenarios including production optimization under subsurface uncertainty with an estimated elapsed time of up to 70%. 

Ensemble-based results were created for probabilistic evaluation of economic success criteria on a well-by-well level. A simulation 

opportunity index and well-based NPV calculations were used for probabilistic well ranking and identification of sweet spots for new 

infill well locations with a positive investment return on additional production volumes.  

Future innovation efforts will focus on parallel execution designs with a stronger integration of predictive modelling steps using machine 

learning technologies.  
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